
Yttrium-Stabilized Zirconia

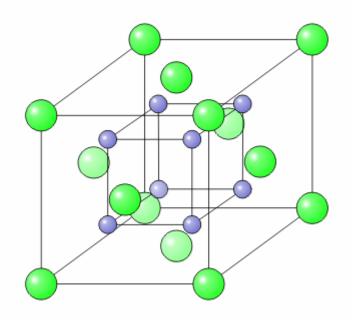
Andrew Ball MSE 395 Materials for Energy Efficient Technology Professor David Dunand

Northwestern Engineering

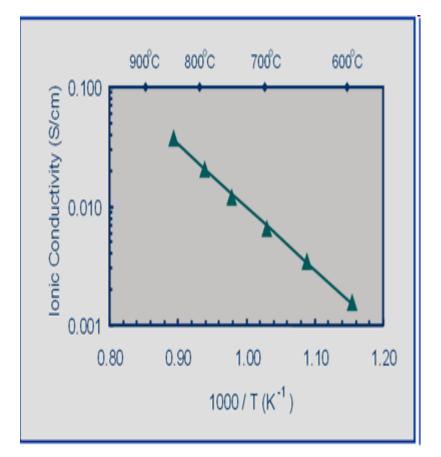
Fuel Cell Basics

- H⁺ and O²⁻ ions are formed at the anode and cathode respectively.
- lon-conducting electrolyte permits flow of one ion from the anode to cathode, or vice versa
- Result: Voltage across the cell as electrons flow across electrical load to balance electrochemical reaction
 - Theoretical V: 0.6-1.2 V.

Northwestern Engineering

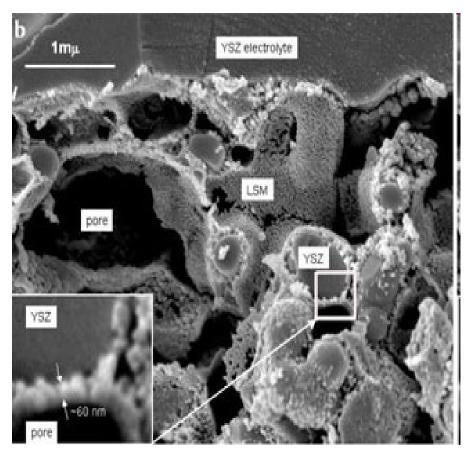

Solid Oxide Fuel Cells

- Conducted Ion: O²⁻
- Electrochemical Reaction:
 - Anode Reaction:2 H2 + 2 O2- => 2 H2O + 4 e-
 - Cathode Reaction:O2 + 4 e- => 2 O2-
 - Overall Cell Reaction:2 H2 + O2 => 2 H2O
- Recombination of ions occurs at the anode
- Electrolyte Material: Yttrium-Stabilized Zirconia


Why YSZ?

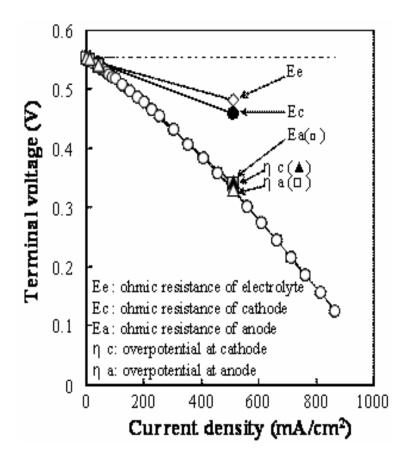
- Zirconia (ZrO₂) is a thermal insulator with high thermodynamic and chemical stability
- Doping Zirconia with Yttria (Y₂O₃) replaces Zr⁴⁺ with Y³⁺
 - Adds Oxygen Vacancies
 - Ionic Conductivity

Ionic Conductivity of YSZ


- At low temperatures, low vacancy mobility limits O²⁻ Mobility.
- Above 700-800 C, high ionic conductivity (comparable to liquid electrolyte fuel cells)
- Result: SOFCs used at high-T.

Northwestern Engineering

YSZ, Porosity, And Electrochemical Reactions


- Energy stems from recombination of ions:
 - 2H⁺ + O²⁻ => H2O
- For the recombination of ions to occur, a 3-phase boundary between the electrolyte, anode, and air is needed.
- 3-phase boundary maximized by porous electrolyte-anode structure

Northwestern Engineering

Advantages of YSZ Use

- High Temperature Reduces Voltage Loss due to *current*, a problem with fuel cells
- Since YSZ remains solid throughout, electrolyte does not vaporize; minimal corrosion
- Good ionic conductivity removes need for expensive electrocatalysts

Disadvantages of YSZ Use

- Temperature, Temperature, Temperature:
 - High Temperature Operation reduces the reaction energy of forming water from oxygen and hydrogen ions (can be mitigated somewhat with CHP setup).
 - High Temperature can be expensive to maintain
 - High temperature can cause thermal expansion stresses in the material
- Zirconia is brittle
 - Electrode Support is needed to keep oxide electrolyte from fracturing too easily, particularly as it is thin
 - Also makes the cell very sensitive to thermal stresses
- Result: Long Warm-Up Time Needed

Future of YSZ

- Increased ionic conductivity at lower temperature
 - Reduced Operation Costs, Shorter Warm-Up Time
 - Higher No-Loss Voltage
 - Less thermal stress
- Complex Dopants
 - Add Ceria; Higher Ionic Conductivity, Lower Stability
- Alternative Materials
 - LaSrGaMgO; Not as well documented or understood

Northwestern Engineering

Questions?